Graphing Inequalities
You will need to look at the graphs in your textbook. .. page 397
Whenever we graph relations that are inequalities we must be aware of all the facts that can influence your work. You need to ask yourself, "What kind of numbers is the solution supposed to be?"
When you graphed inequalities such as
-3 < x < 2 where x was an integer we used a point on the number line for each integer that could be a solution to that inequality.
To show every number in x < 2
we would use a number line and place an Open Dot at 2 indicating that 2 was NOT part of the solution and then draw a darkened ray away from 2 indicating 1, 0, -1, -2... were all part of the solution.
To show that this line has infinite solutions in that direction, you MUST place an arrow at the end of that darkened ray.
If the inequality was a " less than or equal to" " ≤" you would use a Closed Dot at 2 to indicate that 2 was part of the solution.
We can now graph inequalities such as y ≥ x + 2
first you find the BOUNDARY LINE which is just y = x + 2 and you can use the 3 column table as we have done before or use a T chart as shown in class.
Remember you only need 2 points to determine a line---> but 3 points will help you make sure you have 3 correct points on the line!!
I am going to try to set up a T chart using "I" to separate the x and y
X I Y
-2 I 0
-1 I 1
0 I 2
1 I 3
2 I 4
(Note: it doesn't line up well here.. but hopefully you get the idea)
Plot those points on the graph and you have what appears to be a straight line. Since we are graphing y ≥ x + 2 we ARE including the line so we draw a solid line.
But.. what points are included?
Well, we know that (-2,0) works but we also see if we plug into our inequality that (-2,1) and (-2,2) work as well.
We need to shade the part above the line to indicate all those points are part of the solution as well.
Three set method for graphing an inequality
(1) Determine the boundary line. Draw it--
use a solid line if the boundary line is part of the graph (≤ or ≥)
use a dashed line if the boundary line is NOT part of the graph (< or >)
(2) Shaded either the part above the boundary line or the part below the boundary line.
If the inequality reads y > or y ≥ shade ABOVE the line.
If the inequality reads y < or y ≤ shade BELOW the line
(3) Always CHECK- choose a point you think works within the shaded region and see if it does work.. or use (0,0) and determine if it is part of the solution or not!!
Saturday, January 30, 2010
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment