Greatest Common Factor 5-5
If we list the factors of 30 and 42, we notice
Factors of 30: 1, 2, 3, 5, 6, 10, 15, 30
Factors of 42: 1, 2, 3, 6, 7, 14, 21, 42
We notice that 1, 2, 3, and 6 are all COMMON factors of these two numbers. The number 6 is the greatest of these and therefore is called the
GREATEST COMMON FACTOR of the two numbers. We write
GCF(30,42) = 6
Although listing the factors of two numbers and then comparing their common factors is one way to determine the greatest common factor, using prime factorization is another easy way to find the GCF
Find GCF(54, 72)
54 = 2 ⋅ 3 ⋅ 3 ⋅ 3
72 = 2 ⋅ 2 ⋅ 2 ⋅ 3 ⋅ 3
Find the greatest power of 2 that occurs IN BOTH prime factorization. The greatest power of 2 that occurs in both is just 2 1
Find the greatest power of 3 that occurs IN BOTH prime factorizations. The greatest power of 3 that occurs in both is 32
Therefore
GCF(54, 72) = 2 ⋅ 32 = 18
In class we circled the common factors and realized that
GCF(54, 72) = 2 ⋅ 3 ⋅ 3 = 18
Fin the GCF( 45, 60)
45 = 3 ⋅ 3⋅ 5
60 = 2⋅ 2⋅ 3⋅ 5
Since 2 is NOT a factor of 45-- there is NO greatest power of 2 that occurs in both prime factorizations.
The greatest power of 3 is just 31
and the greatest power of 5 is just 51
Therefore,
GCF(45,60) = 3⋅ 5 = 15
The number 1 is a common factor of any two whole numbers!! If 1 is the GCF , then the two numbers are said to be RELATIVELY PRIME. Two numbers can be relatively prime even if one or both of them are composite.
Show that 15 and 16 are relatively prime
List the factors of each number
FACTORS of 15: 1, 3, 5, 15
FACTORS of 16: 1, 2, 4, 8, 16
Since the GCF(15,16) = 1. The two numbers are relatively prime!!
Tuesday, December 1, 2009
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment